Quasi-subtractive varieties

Tomasz Kowalski

University of Melbourne

June 5, 2011

Joint work with Antonio Ledda, Francesco Paoli, Matthew Spinks

A very classical beginning

 Algebras in "classical" varieties have the property that there is an isomorphism between the lattice of congruences and the lattice of some "special" subsets: normal subgroups of groups, two-sided ideals of rings, filters (or ideals) of Boolean algebras.

A very classical beginning

- Algebras in "classical" varieties have the property that there is an isomorphism between the lattice of congruences and the lattice of some "special" subsets: normal subgroups of groups, two-sided ideals of rings, filters (or ideals) of Boolean algebras.
- Gumm and Ursini developed a general theory of ideals in universal algebra. They identified classes of varieties for which ideals behave well.

Subtractive varieties

One such class comprises subtractive varieties. These are defined as varieties possessing a nullary term 0, and a binary term s(x, y), satisfying

•
$$s(x,x) = 0$$

•
$$s(x, 0) = x$$

Subtractive varieties

One such class comprises subtractive varieties. These are defined as varieties possessing a nullary term 0, and a binary term s(x, y), satisfying

- s(x, x) = 0
- s(x, 0) = x

In varieties of logic these are often rendered dually, as:

- $x \rightarrow x = 1$
- $1 \rightarrow x = x$

with 1 playing the role of 0 and filters replacing ideals.

Subtractive varieties

One such class comprises subtractive varieties. These are defined as varieties possessing a nullary term 0, and a binary term s(x, y), satisfying

- s(x, x) = 0
- s(x, 0) = x

In varieties of logic these are often rendered dually, as:

- $x \rightarrow x = 1$
- $1 \rightarrow x = x$

with 1 playing the role of 0 and filters replacing ideals. This will be our "official" notion of subtractivity.

Subtractive varieties

One such class comprises subtractive varieties. These are defined as varieties possessing a nullary term 0, and a binary term s(x, y), satisfying

- s(x, x) = 0
- s(x, 0) = x

In varieties of logic these are often rendered dually, as:

- $x \rightarrow x = 1$
- $1 \rightarrow x = x$

with 1 playing the role of 0 and filters replacing ideals. This will be our "official" notion of subtractivity. Most of the theory of subtractive varieties is due to Aglianò and Ursini.

1-permutability and 1-regularity

 \mathcal{V} is called 1-permutable iff for any algebra $\mathbf{A} \in \mathcal{V}$ and for any congruences θ, φ on \mathbf{A} , we have $\mathbf{1}^{\mathbf{A}}/\theta \circ \varphi = \mathbf{1}^{\mathbf{A}}/\varphi \circ \theta$.

1-permutability and 1-regularity

 \mathcal{V} is called 1-permutable iff for any algebra $\mathbf{A} \in \mathcal{V}$ and for any congruences θ, φ on \mathbf{A} , we have $\mathbf{1}^{\mathbf{A}}/\theta \circ \varphi = \mathbf{1}^{\mathbf{A}}/\varphi \circ \theta$. Gumm and Ursini showed that that \mathcal{V} is 1-permutable iff it is 1-subtractive.

1-permutability and 1-regularity

 \mathcal{V} is called 1-permutable iff for any algebra $\mathbf{A} \in \mathcal{V}$ and for any congruences θ, φ on \mathbf{A} , we have $\mathbf{1}^{\mathbf{A}}/\theta \circ \varphi = \mathbf{1}^{\mathbf{A}}/\varphi \circ \theta$. Gumm and Ursini showed that that \mathcal{V} is 1-permutable iff it is 1-subtractive. Particularly well-behaved subtractive varieties are the point-regular (or 1-regular) ones: varieties \mathcal{V} such that

$$1/ heta=1/arphi$$
 implies $heta=arphi$

for any $\theta, \varphi \in Con(\mathbf{A})$, $\mathbf{A} \in \mathcal{V}$. Point-regular subtractive varieties are known as ideal-determined.

Two properties of subtractive varieties

Theorem

In every member **A** of an ideal-determined variety \mathcal{V} there is a lattice isomorphism between the lattice of congruences of **A** and the lattice of ideals (filters) in the sense of Gumm-Ursini. Moreover, these ideals (filters) coincide with deductive filters of the 1-assertional logic corresponding to \mathcal{V} .

Two properties of subtractive varieties

Theorem

In every member **A** of an ideal-determined variety \mathcal{V} there is a lattice isomorphism between the lattice of congruences of **A** and the lattice of ideals (filters) in the sense of Gumm-Ursini. Moreover, these ideals (filters) coincide with deductive filters of the 1-assertional logic corresponding to \mathcal{V} .

Theorem

In every member **A** of a subtractive variety \mathcal{V} the lattice of ideals (filters) in the sense of Gumm-Ursini is modular.

Above and beyond: three examples

• *Pseudointerior algebras.* Not subtractive, but have a manageable concept of *open filter* (distinct from Gumm-Ursini ideal/filter). In every pseudointerior algebra there is an isomorphism between the lattices of congruences and of open filters.

Above and beyond: three examples

- *Pseudointerior algebras.* Not subtractive, but have a manageable concept of *open filter* (distinct from Gumm-Ursini ideal/filter). In every pseudointerior algebra there is an isomorphism between the lattices of congruences and of open filters.
- *Residuated lattices*. Ideal determined, but there is another isomorphism: between congruences and deductive filters. This is not subsumed by the general results.

Above and beyond: three examples

- *Pseudointerior algebras.* Not subtractive, but have a manageable concept of *open filter* (distinct from Gumm-Ursini ideal/filter). In every pseudointerior algebra there is an isomorphism between the lattices of congruences and of open filters.
- *Residuated lattices.* Ideal determined, but there is another isomorphism: between congruences and deductive filters. This is not subsumed by the general results.
- *Quasi-MV algebras*. Neither subtractive nor 1-regular. Still, in every quasi-MV algebra the lattice of certain "good" congruences is isomorphic to the lattice of certain filter-like subsets.

More about quasi-MV algebras

A quasi-MV algebra is an algebra $\mathbf{A} = \langle A, \oplus, ', 0, 1 \rangle$ of type $\langle 2, 1, 0, 0 \rangle$ satisfying the following equations:

A1.
$$x \oplus (y \oplus z) \approx (x \oplus z) \oplus y$$

A2. $x'' \approx x$
A3. $x \oplus 1 \approx 1$
A4. $(x' \oplus y)' \oplus y \approx (y' \oplus x)' \oplus x$
A5. $(x \oplus 0)' \approx x' \oplus 0$
A6. $(x \oplus y) \oplus 0 \approx x \oplus y$
A7. $0' \approx 1$

More about quasi-MV algebras

A quasi-MV algebra is an algebra $\mathbf{A} = \langle A, \oplus, ', 0, 1 \rangle$ of type $\langle 2, 1, 0, 0 \rangle$ satisfying the following equations:

A1.
$$x \oplus (y \oplus z) \approx (x \oplus z) \oplus y$$

A2. $x'' \approx x$
A3. $x \oplus 1 \approx 1$
A4. $(x' \oplus y)' \oplus y \approx (y' \oplus x)' \oplus x$
A5. $(x \oplus 0)' \approx x' \oplus 0$
A6. $(x \oplus y) \oplus 0 \approx x \oplus y$
A7. $0' \approx 1$

A quasi-MV algebra is an MV algebra if and only if it satisfies the equation $x \oplus 0 \approx x$.

More about quasi-MV algebras

A quasi-MV algebra is an algebra $\mathbf{A} = \langle A, \oplus, ', 0, 1 \rangle$ of type $\langle 2, 1, 0, 0 \rangle$ satisfying the following equations:

A1.
$$x \oplus (y \oplus z) \approx (x \oplus z) \oplus y$$

A2. $x'' \approx x$
A3. $x \oplus 1 \approx 1$
A4. $(x' \oplus y)' \oplus y \approx (y' \oplus x)' \oplus x$
A5. $(x \oplus 0)' \approx x' \oplus 0$
A6. $(x \oplus y) \oplus 0 \approx x \oplus y$
A7. $0' \approx 1$

A quasi-MV algebra is an MV algebra if and only if it satisfies the equation $x \oplus 0 \approx x$. It is flat if and only if it satisfies the equation $x \oplus 0 \approx y \oplus 0$.

More about quasi-MV algebras

Figure: A typical quasi-MV algebra

More about quasi-MV algebras

Figure: A typical quasi-MV algebra

Theorem (Ledda, Konig, Paoli, Giuntini)

The variety of quasi-MV algebras decomposes as a subdirect product of (the varieties of) MV algebras and flat algebras.

・ロト ・同ト ・ヨト ・ヨト

Blok and Raftery introduced a notion of τ -class, relativising the usual notion of congruence class to a given translation (a finite set of equations).

Blok and Raftery introduced a notion of τ -class, relativising the usual notion of congruence class to a given translation (a finite set of equations). If \mathcal{V} is a variety, $\mathbf{A} \in \mathcal{V}$, $\theta \in \operatorname{Con}(\mathbf{A})$ and $\tau = \{\delta_i(x) \approx \epsilon_i(x) \colon i \leq n\}$ is a translation, then $\tau^{\mathbf{A}}/\theta$ is defined as

$$au^{\mathbf{A}}/ heta = \{ a \in \mathbf{A} \colon \delta_i^{\mathbf{A}}(a) heta \epsilon_i^{\mathbf{A}}(a) \text{ for every } i \leq n \}.$$

Appropriate notions of τ -permutability and τ -regularity can then be defined (and τ -permutability turns out to be equivalent to existence of some binary terms satisfying certain equations).

Blok and Raftery introduced a notion of τ -class, relativising the usual notion of congruence class to a given translation (a finite set of equations). If \mathcal{V} is a variety, $\mathbf{A} \in \mathcal{V}$, $\theta \in \operatorname{Con}(\mathbf{A})$ and $\tau = \{\delta_i(x) \approx \epsilon_i(x) \colon i \leq n\}$ is a translation, then $\tau^{\mathbf{A}}/\theta$ is defined as

$$\tau^{\mathbf{A}}/\theta = \{ a \in \mathbf{A} \colon \delta_i^{\mathbf{A}}(a) \theta \epsilon_i^{\mathbf{A}}(a) \text{ for every } i \leq n \}.$$

Appropriate notions of τ -permutability and τ -regularity can then be defined (and τ -permutability turns out to be equivalent to existence of some binary terms satisfying certain equations). So, relativising subtractivity to some τ looks like just what the doctor ordered.

Blok and Raftery introduced a notion of τ -class, relativising the usual notion of congruence class to a given translation (a finite set of equations). If \mathcal{V} is a variety, $\mathbf{A} \in \mathcal{V}$, $\theta \in \operatorname{Con}(\mathbf{A})$ and $\tau = \{\delta_i(x) \approx \epsilon_i(x) \colon i \leq n\}$ is a translation, then $\tau^{\mathbf{A}}/\theta$ is defined as

$$\tau^{\mathbf{A}}/\theta = \{ a \in \mathbf{A} \colon \delta_i^{\mathbf{A}}(a) \theta \epsilon_i^{\mathbf{A}}(a) \text{ for every } i \leq n \}.$$

Appropriate notions of τ -permutability and τ -regularity can then be defined (and τ -permutability turns out to be equivalent to existence of some binary terms satisfying certain equations). So, relativising subtractivity to some τ looks like just what the doctor ordered. Our τ will be { $\Box x \approx 1$ }.

Quasi-subtractive varieties

Definition (Quasi-subtractive varieties)

A variety \mathcal{V} whose type ν includes a nullary term 1 and a unary term \Box is called quasi-subtractive with respect to 1 and \Box , if there is a binary term $x \rightarrow y$, such that \mathcal{V} satisfies the equations

Q1.
$$\Box x \to x \approx 1$$

Q2. $1 \to x \approx \Box x$
Q3. $\Box (x \to y) \approx x \to y$
Q4. $\Box (x \to y) \to (\Box x \to \Box y) \approx 1$

Quasi-subtractive varieties

Definition (Quasi-subtractive varieties)

A variety \mathcal{V} whose type ν includes a nullary term 1 and a unary term \Box is called quasi-subtractive with respect to 1 and \Box , if there is a binary term $x \rightarrow y$, such that \mathcal{V} satisfies the equations

Q1.
$$\Box x \to x \approx 1$$

Q2. $1 \to x \approx \Box x$
Q3. $\Box (x \to y) \approx x \to y$
Q4. $\Box (x \to y) \to (\Box x \to \Box y) \approx 1$

Conditions Q1 and Q2 are jointly equivalent to being τ -permutable, for $\tau = \{\Box x \approx 1\}$.

Quasi-subtractive varieties

Definition (Quasi-subtractive varieties)

A variety \mathcal{V} whose type ν includes a nullary term 1 and a unary term \Box is called **quasi-subtractive with respect to 1 and** \Box , if there is a binary term $x \rightarrow y$, such that \mathcal{V} satisfies the equations

Q1.
$$\Box x \to x \approx 1$$

Q2. $1 \to x \approx \Box x$
Q3. $\Box (x \to y) \approx x \to y$
Q4. $\Box (x \to y) \to (\Box x \to \Box y) \approx 1$

Conditions Q1 and Q2 are jointly equivalent to being τ -permutable, for $\tau = \{\Box x \approx 1\}$. Conditions Q3 and Q4 are less straightforward to justify, but without them the lattice of open filters would not be modular.

Two examples and a caveat

Example (Subtractive varieties)

Every subtractive variety \mathcal{V} is quasi-subtractive: it suffices to take as arrow the term witnessing subtractivity for \mathcal{V} , and as box the identity term.

Two examples and a caveat

Example (Subtractive varieties)

Every subtractive variety \mathcal{V} is quasi-subtractive: it suffices to take as arrow the term witnessing subtractivity for \mathcal{V} , and as box the identity term.

Example (Pointed varieties)

Let \mathcal{V} be any pointed variety, i.e., a variety whose type includes a constant 1. Defining $\Box x = 1 = x \rightarrow y$ it is immediately verified that \mathcal{V} is quasi-subtractive with the above witness terms.

Two examples and a caveat

Example (Subtractive varieties)

Every subtractive variety ${\cal V}$ is quasi-subtractive: it suffices to take as arrow the term witnessing subtractivity for ${\cal V}$, and as box the identity term.

Example (Pointed varieties)

Let \mathcal{V} be any pointed variety, i.e., a variety whose type includes a constant 1. Defining $\Box x = 1 = x \rightarrow y$ it is immediately verified that \mathcal{V} is quasi-subtractive with the above witness terms.

Quasi-subtractivity is an essentially relative notion. Its content depends on the choice of witnessing terms.

Two examples and a caveat

Example (Subtractive varieties)

Every subtractive variety ${\cal V}$ is quasi-subtractive: it suffices to take as arrow the term witnessing subtractivity for ${\cal V}$, and as box the identity term.

Example (Pointed varieties)

Let \mathcal{V} be any pointed variety, i.e., a variety whose type includes a constant 1. Defining $\Box x = 1 = x \rightarrow y$ it is immediately verified that \mathcal{V} is quasi-subtractive with the above witness terms.

Quasi-subtractivity is an essentially relative notion. Its content depends on the choice of witnessing terms.

Life is like a sewer. What you get out of it depends on what you put into it. — Tom Lehrer

< ロ > < 同 > < 回 > < 回 >

Good and bad congruences

Congruences on an algebra **A** from a subtractive variety can be:

Good and bad congruences

Congruences on an algebra **A** from a subtractive variety can be:

• Good: these $\theta \in \operatorname{Con} \mathbf{A}$ which are determined by $1/\theta$.

Good and bad congruences

Congruences on an algebra **A** from a subtractive variety can be:

- Good: these $\theta \in \operatorname{Con} \mathbf{A}$ which are determined by $1/\theta$.
- Bad: these that are not.

Good and bad congruences

Congruences on an algebra **A** from a subtractive variety can be:

- Good: these $\theta \in \operatorname{Con} \mathbf{A}$ which are determined by $1/\theta$.
- Bad: these that are not.

But at least $1/\theta$ always behave!

Good and bad congruences

Congruences on an algebra **A** from a subtractive variety can be:

- Good: these $\theta \in \operatorname{Con} \mathbf{A}$ which are determined by $1/\theta$.
- Bad: these that are not.

But at least $1/\theta$ always behave!

Remark

Quasi-subtractivity deals with varieties where $1/\theta$ may not behave. Subsets that behave can be bigger than $1/\theta$. We will call them open filters.
Good and bad congruences

Congruences on an algebra **A** from a subtractive variety can be:

- Good: these $\theta \in \operatorname{Con} \mathbf{A}$ which are determined by $1/\theta$.
- Bad: these that are not.

But at least $1/\theta$ always behave!

Remark

Quasi-subtractivity deals with varieties where $1/\theta$ may not behave. Subsets that behave can be bigger than $1/\theta$. We will call them open filters.

Remark

Good behaviour of open filters can be expressed by certain "relativised Mal'cev conditions" corresponding to them.

□→ < □→</p>

Open filters

Let \mathcal{V} be quasi-subtractive, and $\mathbf{A} \in \mathcal{V}$.

Definition

An open filter term in the variables \mathbf{x} is is an n + m-ary term $p(\mathbf{x}, \mathbf{y})$ such that $\Box \mathbf{x} \approx 1$ implies $\Box p(\mathbf{x}, \mathbf{y}) \approx 1$

If \Box is the identity, open filter terms are precisely ideal terms in the sense of Gumm-Ursini.

Open filters

Let \mathcal{V} be quasi-subtractive, and $\mathbf{A} \in \mathcal{V}$.

Definition

An open filter term in the variables \mathbf{x} is is an n + m-ary term $p(\mathbf{x}, \mathbf{y})$ such that $\Box \mathbf{x} \approx 1$ implies $\Box p(\mathbf{x}, \mathbf{y}) \approx 1$

If \Box is the identity, open filter terms are precisely ideal terms in the sense of Gumm-Ursini.

Definition An open filter of **A** is a subset $F \subseteq A$ such that: • if p is an open filter term, and $\mathbf{a} \in F$, $\mathbf{b} \in A$, then $p(\mathbf{a}, \mathbf{b}) \in F$ • $a \in F$ iff $\Box a \in F$

For a set $X \subseteq A$, we put $\Gamma(X)$ to be the closure of X under open filter terms, and $\uparrow X$ to be $\Box^{-1}(X) \cup X$.

For a set $X \subseteq A$, we put $\Gamma(X)$ to be the closure of X under open filter terms, and $\uparrow X$ to be $\Box^{-1}(X) \cup X$.

Theorem

Let \mathcal{V} be a quasi-subtractive variety, $\mathbf{A} \in \mathcal{V}$. Then $F \subseteq A$ is an open filter iff $F = \uparrow \{1/\theta\}$ for some congruence θ on \mathbf{A} .

For a set $X \subseteq A$, we put $\Gamma(X)$ to be the closure of X under open filter terms, and $\uparrow X$ to be $\Box^{-1}(X) \cup X$.

Theorem

Let \mathcal{V} be a quasi-subtractive variety, $\mathbf{A} \in \mathcal{V}$. Then $F \subseteq A$ is an open filter iff $F = \uparrow \{1/\theta\}$ for some congruence θ on \mathbf{A} .

Theorem

Let \mathcal{V} be a quasi-subtractive variety, $\mathbf{A} \in \mathcal{V}$ and $X \subseteq A$. The open filter [X) generated by X is precisely $\uparrow \Gamma X$.

For a set $X \subseteq A$, we put $\Gamma(X)$ to be the closure of X under open filter terms, and $\uparrow X$ to be $\Box^{-1}(X) \cup X$.

Theorem

Let \mathcal{V} be a quasi-subtractive variety, $\mathbf{A} \in \mathcal{V}$. Then $F \subseteq A$ is an open filter iff $F = \uparrow \{1/\theta\}$ for some congruence θ on \mathbf{A} .

Theorem

Let \mathcal{V} be a quasi-subtractive variety, $\mathbf{A} \in \mathcal{V}$ and $X \subseteq A$. The open filter [X) generated by X is precisely $\uparrow \Gamma X$.

Theorem

Let \mathcal{V} be a quasi-subtractive variety, and $\mathbf{A} \in \mathcal{V}$. The set of open filters of \mathbf{A} under the operations of intersection and $\uparrow \Gamma$ of union, forms an algebraic modular lattice.

Open and flat subvarieties

Let \mathcal{V} be quasi-subtractive. The subvariety \mathcal{V}_O of \mathcal{V} defined by $\Box x \approx x$ we call open. Any subvariety whose intersection with \mathcal{V}_O is trivial, we call flat.

Open and flat subvarieties

Let \mathcal{V} be quasi-subtractive. The subvariety \mathcal{V}_O of \mathcal{V} defined by $\Box x \approx x$ we call open. Any subvariety whose intersection with \mathcal{V}_O is trivial, we call flat.

Lemma

Let $\mathcal{V}_F \subseteq \mathcal{V}$ be flat. Then, there exists a unary term $\boxtimes x$ such that $\mathcal{V}_O \models \boxtimes x \approx x$ and $\mathcal{V}_F \models \boxtimes x \approx 1$.

Open and flat subvarieties

Let \mathcal{V} be quasi-subtractive. The subvariety \mathcal{V}_O of \mathcal{V} defined by $\Box x \approx x$ we call open. Any subvariety whose intersection with \mathcal{V}_O is trivial, we call flat.

Lemma

Let $\mathcal{V}_F \subseteq \mathcal{V}$ be flat. Then, there exists a unary term $\boxtimes x$ such that $\mathcal{V}_O \models \boxtimes x \approx x$ and $\mathcal{V}_F \models \boxtimes x \approx 1$.

Let \mathcal{V}_1 and \mathcal{V}_2 be varieties. We write $\mathcal{V}_1 \times_s \mathcal{V}_2$ for the class $\{\mathbf{A} \hookrightarrow_s \mathbf{B}_1 \times \mathbf{B}_2 \colon \mathbf{B}_1 \in \mathcal{V}_1 \text{ and } \mathbf{B}_2 \in \mathcal{V}_2\}.$

Open and flat subvarieties

Let \mathcal{V} be quasi-subtractive. The subvariety \mathcal{V}_O of \mathcal{V} defined by $\Box x \approx x$ we call open. Any subvariety whose intersection with \mathcal{V}_O is trivial, we call flat.

Lemma

Let $\mathcal{V}_F \subseteq \mathcal{V}$ be flat. Then, there exists a unary term $\boxtimes x$ such that $\mathcal{V}_O \models \boxtimes x \approx x$ and $\mathcal{V}_F \models \boxtimes x \approx 1$.

Let \mathcal{V}_1 and \mathcal{V}_2 be varieties. We write $\mathcal{V}_1 \times_s \mathcal{V}_2$ for the class $\{\mathbf{A} \hookrightarrow_s \mathbf{B}_1 \times \mathbf{B}_2 \colon \mathbf{B}_1 \in \mathcal{V}_1 \text{ and } \mathbf{B}_2 \in \mathcal{V}_2\}.$

Theorem

If \boxtimes commutes with all operations not preserving $\{1\}$ on all algebras in $\mathcal{V}_O \cup \mathcal{V}_F$, then $\mathcal{V}_O \vee \mathcal{V}_F = \mathcal{V}_O \times_s \mathcal{V}_F$.

Recall that subvarieties V_1 and V_2 of V are disjoint if $V_1 \cap V_2$ is the trivial variety.

Recall that subvarieties V_1 and V_2 of V are disjoint if $V_1 \cap V_2$ is the trivial variety.

Theorem

Let V_1 and V_2 be subvarieties of a congruence 3-permutable variety V. If V_1 and V_2 are disjoint, then $V_1 \vee V_2 = V_1 \times_s V_2$.

Recall that subvarieties V_1 and V_2 of V are disjoint if $V_1 \cap V_2$ is the trivial variety.

Theorem

Let V_1 and V_2 be subvarieties of a congruence 3-permutable variety V. If V_1 and V_2 are disjoint, then $V_1 \vee V_2 = V_1 \times_s V_2$.

Varieties \mathcal{V}_1 and \mathcal{V}_2 are independent if there is a binary term $x \star y$ such that $\mathcal{V}_1 \models x \star y = x$ and $\mathcal{V}_1 \models x \star y = y$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Recall that subvarieties \mathcal{V}_1 and \mathcal{V}_2 of \mathcal{V} are disjoint if $\mathcal{V}_1 \cap \mathcal{V}_2$ is the trivial variety.

Theorem

Let V_1 and V_2 be subvarieties of a congruence 3-permutable variety V. If V_1 and V_2 are disjoint, then $V_1 \vee V_2 = V_1 \times_s V_2$.

Varieties \mathcal{V}_1 and \mathcal{V}_2 are independent if there is a binary term $x \star y$ such that $\mathcal{V}_1 \models x \star y = x$ and $\mathcal{V}_1 \models x \star y = y$.

Theorem

Let \mathcal{V} be a variety of groups. The following are equivalent.

Some known results

Let \mathcal{V} be a quasi-subtractive variety with open and flat subvarieties \mathcal{V}_O and \mathcal{V}_F such that, for some binary term $x \circ y$ and unary term \Box , the following hold:

- $\mathbf{U}_{\mathcal{O}} \models \boxdot x \approx 1, \quad x \circ 1 \approx x$
- $\mathbf{\mathcal{V}}_{F} \models \boxdot x \approx x, \quad 1 \circ x \approx x.$

Some known results

Let \mathcal{V} be a quasi-subtractive variety with open and flat subvarieties \mathcal{V}_O and \mathcal{V}_F such that, for some binary term $x \circ y$ and unary term \Box , the following hold:

- $\mathbf{V}_{O} \models \boxdot x \approx 1, \quad x \circ 1 \approx x$
- $\mathbf{\mathcal{V}}_{\mathsf{F}} \models \boxdot x \approx x, \quad 1 \circ x \approx x.$

Theorem

Let \mathcal{V} , \mathcal{V}_O and \mathcal{V}_F be as above. Then $\mathcal{V}_O \lor \mathcal{V}_F = \mathcal{V}_O \times \mathcal{V}_F$.

Some known results

Let \mathcal{V} be a quasi-subtractive variety with open and flat subvarieties \mathcal{V}_O and \mathcal{V}_F such that, for some binary term $x \circ y$ and unary term \Box , the following hold:

 $\mathbf{V}_{O} \models \boxdot x \approx 1, \quad x \circ 1 \approx x$

Theorem

Let \mathcal{V} , \mathcal{V}_O and \mathcal{V}_F be as above. Then $\mathcal{V}_O \lor \mathcal{V}_F = \mathcal{V}_O \times \mathcal{V}_F$.

Some known direct decomposition theorems become corollaries. Such are the decomposition theorems for certain varieties of residuated lattices, due to Jónsson-Tsinakis and Galatos-Tsinakis, or for *sircomonoids* due to Raftery-Van Alten.

・ 同 ト ・ ヨ ト ・ ヨ ト

Transfer of CEP and AP

Theorem

Let \mathcal{V}_O and \mathcal{V}_F be an open and flat subvarieties of a quasi-subtractive variety \mathcal{V} . Then, $\mathcal{V}_O \lor \mathcal{V}_F$ has CEP if and only if both \mathcal{V}_O and \mathcal{V}_F have CEP.

Transfer of CEP and AP

Theorem

Let \mathcal{V}_O and \mathcal{V}_F be an open and flat subvarieties of a quasi-subtractive variety \mathcal{V} . Then, $\mathcal{V}_O \lor \mathcal{V}_F$ has CEP if and only if both \mathcal{V}_O and \mathcal{V}_F have CEP.

Theorem

Let V_O and V_F be an open and flat subvarieties of a quasi-subtractive variety V. Then,

- **1** $\mathcal{V}_O \lor \mathcal{V}_F$ has AP iff \mathcal{V}_O and \mathcal{V}_F have AP,
- **2** $\mathcal{V}_O \lor \mathcal{V}_F$ has SAP iff \mathcal{V}_O and \mathcal{V}_F have SAP.

For any term $t(\mathbf{x})$, we define its open translation t^{\Box} inductively:

- $x^{\Box} = x$, for a variable x,
- $o^{\Box}(t_1, \ldots, t_k) = \Box o(t_1^{\Box}, \ldots, t_k^{\Box})$, for a *k*-ary basic operation *o* and terms t_1, \ldots, t_k .

For any term $t(\mathbf{x})$, we define its open translation t^{\Box} inductively:

- $x^{\Box} = x$, for a variable x,
- $o^{\Box}(t_1, \ldots, t_k) = \Box o(t_1^{\Box}, \ldots, t_k^{\Box})$, for a *k*-ary basic operation *o* and terms t_1, \ldots, t_k .

On $A^{\Box} = \{a \in A : \Box a = a\}$, we define operations, putting $(o^{\Box})_{o \in O}$, where O is the set of all basic operations in the type. Then \mathbf{A}^{\Box} is the algebra $\langle A^{\Box}, (o^{\Box})_{o \in O} \rangle$.

For any term $t(\mathbf{x})$, we define its open translation t^{\Box} inductively:

- $x^{\Box} = x$, for a variable x,
- $o^{\Box}(t_1, \ldots, t_k) = \Box o(t_1^{\Box}, \ldots, t_k^{\Box})$, for a *k*-ary basic operation *o* and terms t_1, \ldots, t_k .

On $A^{\Box} = \{a \in A : \Box a = a\}$, we define operations, putting $(o^{\Box})_{o \in O}$, where O is the set of all basic operations in the type. Then \mathbf{A}^{\Box} is the algebra $\langle A^{\Box}, (o^{\Box})_{o \in O} \rangle$. Since \Box is idempotent, everything is hunky-dory. In particular, the construction is functorial.

For any term $t(\mathbf{x})$, we define its open translation t^{\Box} inductively:

- $x^{\Box} = x$, for a variable x,
- $o^{\Box}(t_1, \ldots, t_k) = \Box o(t_1^{\Box}, \ldots, t_k^{\Box})$, for a *k*-ary basic operation *o* and terms t_1, \ldots, t_k .

On $A^{\Box} = \{a \in A : \Box a = a\}$, we define operations, putting $(o^{\Box})_{o \in O}$, where O is the set of all basic operations in the type. Then \mathbf{A}^{\Box} is the algebra $\langle A^{\Box}, (o^{\Box})_{o \in O} \rangle$. Since \Box is idempotent, everything is hunky-dory. In particular, the construction is functorial. But we need another slide ...

Functoriality

Lemma

Let $h: \mathbf{A} \to \mathbf{B}$ be a homomorphism. Then, $h|_{A^{\square}}: \mathbf{A}^{\square} \to \mathbf{B}^{\square}$ is a homomorphism, and the diagram

commutes. In particular, if θ is a congruence on **A**, then $\theta|_{\mathbf{A}^{\square}}$ is a congruence on \mathbf{A}^{\square} .

Functoriality

Lemma

Let $h: \mathbf{A} \to \mathbf{B}$ be a homomorphism. Then, $h|_{A^{\square}}: \mathbf{A}^{\square} \to \mathbf{B}^{\square}$ is a homomorphism, and the diagram

commutes. In particular, if θ is a congruence on **A**, then $\theta|_{\mathbf{A}^{\Box}}$ is a congruence on \mathbf{A}^{\Box} .

Suppose $\mathbf{A} \in \mathcal{V}$. In general, \mathbf{A}^{\Box} may not belong to \mathcal{V} . Things begin to improve if the open translation preserves some structure.

Divide . . .

Let $\mathcal{V}^{\Box} = \{ \mathbf{A}^{\Box} \colon \mathbf{A} \in \mathcal{V} \}$. An open contraction \mathbf{A}^{\Box} is:

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Divide ...

Let $\mathcal{V}^{\Box} = \{\mathbf{A}^{\Box} : \mathbf{A} \in \mathcal{V}\}$. An open contraction \mathbf{A}^{\Box} is:

• smooth, if \Box^{\Box} and \rightarrow^{\Box} coincide on A^{\Box} with \Box and \rightarrow .

Divide ...

Let $\mathcal{V}^{\Box} = \{\mathbf{A}^{\Box} : \mathbf{A} \in \mathcal{V}\}$. An open contraction \mathbf{A}^{\Box} is:

- smooth, if \Box^{\Box} and \rightarrow^{\Box} coincide on A^{\Box} with \Box and \rightarrow .
- contractive, if $\mathbf{A} \in \mathcal{V}$ implies $\mathbf{A}^{\Box} \in \mathcal{V}$.

- Let $\mathcal{V}^{\Box} = \{ \mathbf{A}^{\Box} \colon \mathbf{A} \in \mathcal{V} \}$. An open contraction \mathbf{A}^{\Box} is:
 - smooth, if \Box^{\Box} and \rightarrow^{\Box} coincide on A^{\Box} with \Box and \rightarrow .
 - contractive, if $\mathbf{A} \in \mathcal{V}$ implies $\mathbf{A}^{\Box} \in \mathcal{V}$.
 - invertible, if for every algebra A ∈ V and every congruence φ on A[□] there is a congruence θ on A such that φ = θ|_{A[□]}.

- Let $\mathcal{V}^{\Box}=\{\textbf{A}^{\Box}\colon \textbf{A}\in\mathcal{V}\}.$ An open contraction \textbf{A}^{\Box} is:
 - smooth, if \Box^{\Box} and \rightarrow^{\Box} coincide on A^{\Box} with \Box and \rightarrow .
 - contractive, if $\mathbf{A} \in \mathcal{V}$ implies $\mathbf{A}^{\Box} \in \mathcal{V}$.
 - invertible, if for every algebra A ∈ V and every congruence φ on A[□] there is a congruence θ on A such that φ = θ|_{A[□]}.

Some scattered facts on these:

- Let $\mathcal{V}^{\Box}=\{\textbf{A}^{\Box}\colon \textbf{A}\in\mathcal{V}\}.$ An open contraction \textbf{A}^{\Box} is:
 - smooth, if \Box^{\Box} and \rightarrow^{\Box} coincide on A^{\Box} with \Box and \rightarrow .
 - contractive, if $\mathbf{A} \in \mathcal{V}$ implies $\mathbf{A}^{\Box} \in \mathcal{V}$.
 - invertible, if for every algebra A ∈ V and every congruence φ on A[□] there is a congruence θ on A such that φ = θ|_{A[□]}.

Some scattered facts on these:

• There exist non-smooth open translations.

- Let $\mathcal{V}^{\Box}=\{\textbf{A}^{\Box}\colon \textbf{A}\in\mathcal{V}\}.$ An open contraction \textbf{A}^{\Box} is:
 - smooth, if \Box^{\Box} and \rightarrow^{\Box} coincide on A^{\Box} with \Box and \rightarrow .
 - contractive, if $\mathbf{A} \in \mathcal{V}$ implies $\mathbf{A}^{\Box} \in \mathcal{V}$.
 - invertible, if for every algebra A ∈ V and every congruence φ on A[□] there is a congruence θ on A such that φ = θ|_{A□}.

Some scattered facts on these:

- There exist non-smooth open translations.
- The notions are pairwise independent (e.g., translation from *l*-groups to their negative cones is invertible, but not contractive; translation from residuated lattices to negative cones is contractive but not invertible).

- Let $\mathcal{V}^{\square}=\{\textbf{A}^{\square}\colon \textbf{A}\in\mathcal{V}\}.$ An open contraction \textbf{A}^{\square} is:
 - smooth, if \Box^{\Box} and \rightarrow^{\Box} coincide on A^{\Box} with \Box and \rightarrow .
 - contractive, if $\mathbf{A} \in \mathcal{V}$ implies $\mathbf{A}^{\Box} \in \mathcal{V}$.
 - invertible, if for every algebra A ∈ V and every congruence φ on A[□] there is a congruence θ on A such that φ = θ|_{A□}.

Some scattered facts on these:

- There exist non-smooth open translations.
- The notions are pairwise independent (e.g., translation from *l*-groups to their negative cones is invertible, but not contractive; translation from residuated lattices to negative cones is contractive but not invertible).
- A subvariety of a contractive variety may fail to be contractive.

... et impera

Theorem

Let **A** be quasi-subtractive with witness terms \Box and \rightarrow . If **A**^{\Box} is smooth, then **A**^{\Box} is subtractive with witness term \rightarrow^{\Box} .

- **→** → **→**

... et impera

Theorem

Let **A** be quasi-subtractive with witness terms \Box and \rightarrow . If **A**^{\Box} is smooth, then **A**^{\Box} is subtractive with witness term \rightarrow^{\Box} .

Theorem

Let \mathcal{V} be smooth and contractive. Then, the class \mathcal{V}^{\Box} is a variety and it coincides with \mathcal{V}_{O} , the open subvariety of \mathcal{V} .
... et impera

Theorem

Let **A** be quasi-subtractive with witness terms \Box and \rightarrow . If **A**^{\Box} is smooth, then **A**^{\Box} is subtractive with witness term \rightarrow^{\Box} .

Theorem

Let \mathcal{V} be smooth and contractive. Then, the class \mathcal{V}^{\Box} is a variety and it coincides with \mathcal{V}_{O} , the open subvariety of \mathcal{V} .

Theorem

Let \mathcal{V} be smooth and invertible and $\mathbf{A} \in \mathcal{V}$. Suppose F is a \mathcal{V}^{\Box} -open filter on \mathbf{A}^{\Box} . Then, $\uparrow F$ is a \mathcal{V} -open filter on \mathbf{A} .

< □ > < □ >

Bases for contractive varieties

An identity $t(\mathbf{x}) \approx s(\mathbf{x})$ will be called stable if it survives open translation, that is, if

•
$$\mathcal{V} \models t(\mathbf{x}) \approx s(\mathbf{x})$$
, and
• $\mathcal{V} \models t^{\Box}(\Box \mathbf{x}) \approx s^{\Box}(\Box \mathbf{x})$

where t^{\Box} and s^{\Box} are the respective open translations of t and s.

Bases for contractive varieties

An identity $t(\mathbf{x}) \approx s(\mathbf{x})$ will be called stable if it survives open translation, that is, if

- $\mathcal{V} \models t(\mathbf{x}) \approx s(\mathbf{x})$, and
- $\mathcal{V} \models t^{\Box}(\Box \mathbf{x}) \approx s^{\Box}(\Box \mathbf{x})$,

where t^{\Box} and s^{\Box} are the respective open translations of t and s.

Theorem

Let \mathcal{V} be quasi-subtractive. Then the following are equivalent:

- \mathcal{V} is contractive;
- ${\it 2} {\it V}$ has a basis of stable identities;
- \bigcirc every basis of \mathcal{V} consists of stable identities;
- Ithe equational theory of V consists of stable identities.

Stable expansions

For a quasi-subtractive \mathcal{V} , we define its stable expansion \mathcal{V}_s to be the class of models of the stable part of the equational theory of \mathcal{V} . Namely, we put $\mathcal{V}_S = \operatorname{Mod}\{Eq(\mathcal{V}) \cap Eq(\mathcal{V}^{\Box})\}$.

Stable expansions

For a quasi-subtractive \mathcal{V} , we define its stable expansion \mathcal{V}_s to be the class of models of the stable part of the equational theory of \mathcal{V} . Namely, we put $\mathcal{V}_S = \operatorname{Mod}\{Eq(\mathcal{V}) \cap Eq(\mathcal{V}^{\Box})\}$.

Lemma

For any quasi-subtractive smooth variety \mathcal{V} , we have $(\mathcal{V}_S)^{\Box} = \mathcal{V}^{\Box}$. Thus, the stable expansion \mathcal{V}_S of \mathcal{V} is contractive.

Stable expansions

For a quasi-subtractive \mathcal{V} , we define its stable expansion \mathcal{V}_s to be the class of models of the stable part of the equational theory of \mathcal{V} . Namely, we put $\mathcal{V}_S = \operatorname{Mod}\{Eq(\mathcal{V}) \cap Eq(\mathcal{V}^{\Box})\}$.

Lemma

For any quasi-subtractive smooth variety \mathcal{V} , we have $(\mathcal{V}_S)^{\Box} = \mathcal{V}^{\Box}$. Thus, the stable expansion \mathcal{V}_S of \mathcal{V} is contractive.

Theorem

Let \mathcal{V} be quasi-subtractive with witness terms 1, \Box and \rightarrow , which are smooth. Then, for $\mathcal{W} = \mathcal{V} \vee \mathcal{V}^{\Box}$ we have:

- W is contractive.
- $\bullet \ \mathcal{W}$ is quasi-subtractive with the same witness terms.
- $\mathcal W$ is precisely the class of models of stable identities of $\mathcal V.$

•
$$\mathcal{W}^{\Box} = \mathcal{V}^{\Box} = \mathcal{W}_{O}$$

Examples of open contractions

Example

Let \mathcal{V} be the variety of quasi-MV algebras, and $\Box x = x \oplus 0$, $x \to y = \neg x \oplus y$. Then, $\mathcal{V}^{\Box} \subseteq \mathcal{V}$ is the variety of MV algebras.

Examples of open contractions

Example

Let \mathcal{V} be the variety of quasi-MV algebras, and $\Box x = x \oplus 0$, $x \to y = \neg x \oplus y$. Then, $\mathcal{V}^{\Box} \subseteq \mathcal{V}$ is the variety of MV algebras.

Example

Let \mathcal{V} be the variety of residuated lattices, and $\Box x = x \wedge 1$, $x \to y = x \setminus y$. Then $\mathcal{V}^{\Box} \subseteq \mathcal{V}$ is the variety of integral residuated lattices, and the translation is known as the negative cone contraction.

Examples of open contractions

Example

Let \mathcal{V} be the variety of quasi-MV algebras, and $\Box x = x \oplus 0$, $x \to y = \neg x \oplus y$. Then, $\mathcal{V}^{\Box} \subseteq \mathcal{V}$ is the variety of MV algebras.

Example

Let \mathcal{V} be the variety of residuated lattices, and $\Box x = x \wedge 1$, $x \to y = x \setminus y$. Then $\mathcal{V}^{\Box} \subseteq \mathcal{V}$ is the variety of integral residuated lattices, and the translation is known as the negative cone contraction.

Example

Let \mathcal{V} be the variety of ℓ -groups, and $\Box x = x \wedge 1$, $x \to y = x^{-1}y$. Then \mathcal{V}^{\Box} is the variety of negative cones of ℓ -groups, and $\mathcal{V} \vee \mathcal{V}^{\Box} = \mathcal{V} \times \mathcal{V}^{\Box}$.

Examples of open contractions

Example

Let \mathcal{V} be the variety of pseudointerior algebras, $\Box x = x^{\circ}$ and $x \to y = (x \setminus y)^{\circ}$, where $^{\circ}$ is the pseudointerior operation and $x \setminus y$ is the "pseudoresiduation". Then $\mathcal{V}^{\Box} \subseteq \mathcal{V}$ is the variety of Brouwerian semilattices.

Examples of open contractions

Example

Let \mathcal{V} be the variety of pseudointerior algebras, $\Box x = x^{\circ}$ and $x \to y = (x \setminus y)^{\circ}$, where $^{\circ}$ is the pseudointerior operation and $x \setminus y$ is the "pseudoresiduation". Then $\mathcal{V}^{\Box} \subseteq \mathcal{V}$ is the variety of Brouwerian semilattices.

Example

Any variety C of Boolean algebras with conjugate operators (of finite type) directly decomposes as $C_1 \times C_2$, with

- $\mathcal{C}_1 \models \boxtimes \mathbf{0} \approx \mathbf{1}$,
- $C_2 \models \boxtimes 0 \approx 0$,

where \boxtimes is the *master modality*.

Open contractions as translations between logics

Example

Let \mathcal{V} be the variety of interior algebras and $\Box x$ be the interior operator. Then \mathcal{V}^{\Box} is the variety of Heyting algebras, and the open translation is the usual Gödel translation.

Open contractions as translations between logics

Example

Let \mathcal{V} be the variety of interior algebras and $\Box x$ be the interior operator. Then \mathcal{V}^{\Box} is the variety of Heyting algebras, and the open translation is the usual Gödel translation.

Example

Let \mathcal{V} be the variety of Heyting algebras and $\Box x = \neg \neg x$. Then $\mathcal{V}^{\Box} \subseteq \mathcal{V}$ is the variety of Boolean algebras, and the open translation is the usual Glivenko translation.

Whither must I wander?

Problem

Commutator for open filters.

э

Whither must I wander?

Problem

Commutator for open filters.

Problem

Open contractions and translations between logics. Look at smoothness, contractivity and invertibility in this context.

Whither must I wander?

Problem

Commutator for open filters.

Problem

Open contractions and translations between logics. Look at smoothness, contractivity and invertibility in this context.

Problem

Characterise these quasi-subtractive V that decompose as $V = V_O \times_s V_F$.

Whither must I wander?

Problem

Commutator for open filters.

Problem

Open contractions and translations between logics. Look at smoothness, contractivity and invertibility in this context.

Problem

Characterise these quasi-subtractive V that decompose as $V = V_O \times_s V_F$.

Problem

Have a closer look at relativised Mal'cev conditions.

• □ ▶ • □ ▶ • □ ▶ • □

-

Final advertisements

- T. K., F. Paoli, M. Spinks, Quasi-subtractive varieties, *Journal* of Symbolic Logic, forthcoming.
- T. K., F. Paoli, Joins and subdirect products of varieties, *Algebra Universalis*, forthcoming.

Sequels:

- F. Paoli, Wednesday, 3pm.
- A. Ledda, Wednesday, 4:30pm